A Lei de Moseley é uma lei empírica obtida pela relação entre raios-X característicos dos átomos. É importante historicamente na justificação do modelo nuclear para o átomo, em que toda a carga positiva está contida no núcleo do átomo, e é associada ao seu número de elétrons. Na época de Moseley, o número atômico era apenas a posição do elemento na tabela periódica, sem significado físico. [1]

História

Nas conversas com Niels Bohr em 1913, Moseley ficou interessado no modelo atômico de Bohr, em que o espectro de emissão eletromagnética dos átomos é proporcional à raiz quadrada de Z, ou seja, à carga elétrica no núcleo (que tinha sido descoberta dois anos antes). O modelo de Bohr tinha sido bem sucedido em demonstrar a fórmula empírica de Rydberg para o átomo de Hidrogênio, porém não conseguia explicar o espectro para os elementos mais massivos. Em particular, apenas dois anos antes, Rutherford em 1911, postulou que o Z para átomos de prata menos que a metade de sua massa e pouco tempo depois, Antonius van den Broek sugeriu que o valor de Z não era a metade da massa atômica, mas era exatamente o número atômico, ou a posição na tabela periódica. Até aquela época, não se conhecia qualquer significado físico para a posição do elemento na tabela periódica, com exceção da ordenação de algumas propriedades químicas.

Na maioria dos casos, a tabela periódica tende a ficar de acordo com a massa atômica, porém existem alguns casos famosos de átomos com número atômico maior e massa menos, como por exemplo o cobalto com massa 58,9 e Z=27 e o níquel de massa 58,7 e Z=28.

Como o espectro de emissão para átomos com Z altos estão na faixa dos raios-X moles (facilmente absorvidos pelo ar), Moseley precisou utilizar tubos de vácuo. Usando as técnicas de difração de raios-X, Moseley descobriu que as linhas de emissões mais intensas dos átomos eram intrinsecamente relacionadas com o número atômico Z.

Essa linha atualmente é conhecida como linha K-alfa. E finalmente Moseley descobriu que essa relação podia ser descrita por uma fórmula simples, que ficou conhecida como a Lei de Moseley.

X
SISTEMA SDCTIE GRACELI

Onde:

 é a frequencia de emissão da linha Kα
 and  são constantes que dependem do tipo de linha

Por exemplo, os valores de  e  são os mesmos para todas as linhas  então a fórmula pode ser simplificada para:

 Hz
X

SISTEMA SDCTIE GRACELI

Moseley escolheu mostrar a fórmula sem  mais com um número constante puro, no estilo de Rydberg, deixando a constante como 3/4 (ou 1- 1/4) da frequência fundamental de Rydberg ((3.29*1015 Hz) para as linhas  e novamente para as linhas  ficou igual a 1/4 - 1/9 = 5/36 vezes a frequência de Rydberg, essa foi a forma que Moseley escolheu para escrever sua fórmula.[2]

A constante empírica  é dado pelo fit dos dados das linhas de emissão  e  Moseley obteve o valor (Z - 7.4)² para as linhas  e  igual a 1 para as linhas .

Abaixo está a formulação original de Moseley (com os dois lados elevado ao quadrado para melhor clareza).

 Hz
 Hz
X

SISTEMA SDCTIE GRACELI

Derivação e justificativo do modelo de Bohr do núcleo atômico de Rutheford

Moseley deduziu sua fórmula empiricamente plotando a raiz quadrada das frequências de emissão de raios-x em função do número atômico, entretanto, sua dedução podia ser explicada em termos do modelo de Bohr (veja detalhes para a derivação para o átomo de Hidrogênio), se certos pressupostos razoáveis sobre a estrutura atômica dos outros elementos forem feitos, porém na época em que Moseley derivou sua lei, nem ele e nem Bohr conseguiu explicar a sua forma.

A fórmula empírica de Rydberg é explicada pelo modelo de Bohr através da descrição de transições ou saltos quânticos entre um nível de energia a outro no átomo de Hidrogênio. Quando um elétron salta de um nível energético para outro, um fóton é emitido. Usando a fórmula para diferentes níveis de energia, é possível determinar as energias, ou frequências que um átomo de Hidrogênio pode emitir.

energia do fóton que um átomo de hidrogênio emite no modelo de Bohr, é dado pela diferença de energia entre dois níveis.

X

SISTEMA SDCTIE GRACELI

(note que Bohr usou unidades de Planck em que ), e

 = massa do elétron

 = carga do elétron (1.602 × 10−19 coulombs)

 = número quântico do nível final de energia

 = número quântico do nível inicial de energia

Assume-se que o nível de energia final é menor do que o nível inicial.

Por exemplo, para o hidrogênio, a fórmula fica  por que o Z (a carga elétrica positiva no núcleo) é igual a 1, com isso, o núcleo de hidrogênio contém uma única carga. Assim, para o átomo de hidrogênio (onde o elétron pode ser descrito como uma nuvem esférica entorno do núcleo) Bohr percebeu que era necessário acrescentar uma quantidade adicional ao termo convencional  a fim de explicar a atração extra sobre o elétron, e portanto a energia extra entre os níveis quânticos.

Isso foi feito em 1914 quando Bohr conseguiu adaptar a fórmula de Moseley, através de duas definições. A primeira é de que o elétron responsável pela linha espectral mais brilhante (Kα), que Moseley tinha estudado para diversos elementos, era resultado da transição de um único elétron entre as camadas K e L do átomo (i.e., da camada mais próxima do núcleo para a segunda mais próxima), com números de energia quântica de 1 e 2. Finalmente, o Z, embora ainda na raiz quadrada, requer que seja subtraído 1 para calcular o Kα (Após a morte de Moseley, isso foi entendido como uma correção da conta devido a carga total do núcleo, menos um elétron que remanesceu na camada K, visto simplesmente como elétron 1s). Em todo caso, o termo (Z-1) requer que esteja em uma raiz quadrada para se ajustar aos dados empíricos, então a conta de Bohr para a fórmula de Moseley para a linha Kα fica:

X

SISTEMA SDCTIE GRACELI

ou dividindo ambos os lados por h para converter E para f):

X

SISTEMA SDCTIE GRACELI



Agrupando todos os termos constantes da fórmula em uma única, resulta em um termo de frequência equivalente a 3/4 da energia de ionização de 13,6 eV (veja constante de Rydberg para hidrogênio = 3.29 x 1015 Hz), como o valor final de 2.47 x 1015 Hz, uma boa aproximação com o valor obtido empiricamente por Moseley de 2.48 x 1015 Hz. Essa frequência fundamental é igual a linha alfa da série de Lyman para o hidrogênio, porque a transição 1s para 2p é responsável pela linha alfa de Lyman no hidrogênio e para as linhas Kα do espectro de raios-X para elementos acima do hidrogênio, Moseley tinha plena consciência de que sua frequência fundamental era a linha alfa de Lyman, que a frequência fundamental de Rydberg resultava de duas energias atômicas fundamentais, e por isso que a diferença do fator de Rydberg-Bohr era de exatamente 3/4.

Entretanto a necessidade da redução de Z por um número muito próximo de 1 para as linhas Kα dos elementos pesados, (acima do Alumínio) foi deduzida de forma totalmente empírica por Moseley, e não foi discutida de forma teórica em seus artigos, pois o conceito de camadas atômicas com pares de elétron ainda não tinha sido muito bem estabelecida em 1913 ( O assunto só ficaria mais claro por volta de 1920), e em particular o modelo de Schrödinger para as órbitas atômicas ainda não tinha sido formalmente introduzido, e ainda não foi totalmente entendido até antes de 1926.

Até o momento, Moseley foi enigmático com Bohr sobre o termo Z-1, Bohr pensava que a camada interna dos elétrons podia conter de 4 a 6 elétrons. Moseley por um tempo pensou que as linhas K eram resultados a transição simultânea de 4 elétrons da camada L para K, porém ele não se comprometeu a ponto de publicas essas ideias.

No que se refere as transições Lα, na visão moderna, associamos cada camada el



etrônica com um número quântico n, onde cada camada contém 2n² elétrons, ou seja, se n=1, temos no máximo 2 elétrons, se n=2, 8 elétrons. O valor empírico de 7,4 obtido por Moseley para  é associado a transição de n=2 para 3, e é chamada de transição Lα (não confundir com transição alfa de Lyman), e ocorre da camada M para L na notação de letras de Bohr. O valor de 7,4 é agora conhecido como um efeito de blindagem eletrônica do elétrons contidos nas camadas n=1 e 2 (ou camadas K e L).




Lei de Planck para radiação de corpo negro exprime a radiância espectral em função do comprimento de onda e da temperatura do corpo negro.

X
SISTEMA SDCTIE GRACELI

A tabela seguinte descreve as variáveis e unidades utilizadas:

VariávelDescriçãoUnidade
radiância espectralJ•s−1•m−2•sr−1•Hz−1
frequênciahertz
temperatura do corpo negrokelvin
constante de Planckjoule / hertz
velocidade da luz no vácuometros / segundo
número de Eulersem dimensão
constante de Boltzmannjoule / kelvin

X
SISTEMA SDCTIE GRACELI

O comprimento de onda está relacionado a frequência como (supondo propagação de uma onda no vácuo):

X
SISTEMA SDCTIE GRACELI

Pode-se escrever a Lei de Planck em termos de energia espectral:

X
SISTEMA SDCTIE GRACELI


A energia espectral também pode ser expressa como função do comprimento de onda:


X
SISTEMA SDCTIE GRACELI


Max Planck produziu esta lei em 1900 e a publicou em 1901, na tentativa de melhorar a expressão proposta por Wilhelm Wien que adequou dados experimentais para comprimentos de onda curtos desviados para comprimentos de onda maiores. Ele estabeleceu que a Lei de Planck adequava-se para todos os comprimentos de onda extraordinariamente bem. Ao deduzir esta lei, ele considerou a possibilidade da distribuição de energia eletromagnética sobre os diferentes modos de oscilação de carga na matéria. A Lei de Planck nasceu quando ele assumiu que a energia destas oscilações foi limitada para múltiplos inteiros da energia fundamental E, proporcional à freqüência de oscilação  [1]:

 .

X

SISTEMA SDCTIE GRACELI



Planck acreditava que a quantização aplicava-se apenas a pequenas oscilações em paredes com cavidades (que hoje conhecemos como átomos), e não assumindo as propriedades de propagação da Luz em pacotes discretos de energia. Além disto, Planck não atribuiu nenhum significado físico a esta suposição, mas não acreditava que fosse apenas um resultado matemático que possibilitou uma expressão para o espectro emitido pelo corpo negro a partir de dados experimentais dos comprimentos de onda. Com isto Planck pôde resolver o problema da catástrofe do ultravioleta encontrada por Rayleigh e Jeans que fazia a radiância espectral tender ao infinito quando o comprimento de onda aproximava-se de zero, o que experimentalmente não é observado. É importante observar também que para a região do visível a fórmula de Planck pode ser aplicada pela aproximação de Wien e da mesma forma para temperaturas maiores e maiores comprimentos de onda podemos ter também a aproximação dada por Rayleigh e Jeans.

Comentários

Postagens mais visitadas deste blog

MOVIMENTO DE GRACELIGRACELI